Autonomous Vacuum Cleaner Design Competition Report

MECH 202

Group 9

December 9, 2022

Mason Adams Alaina Bentley Ryan Blake Anna Buckley Daniel Pelphrey

mason.adams@colostate.edu alaina.bentley@colostate.edu ryan.blake@colostate.edu anna.buckley@colostate.edu daniel.pelphrey@colostate.edu

Colorado State University Fall 2022 Semester

Table of Contents

Design Problem Statement	5
Design Problem Statement	5
Specifications Development	6
Quality Function Deployment	
Customer Requirements	8
Competitor Analysis	11
Specifications Development	
Specifications Tradeoff	17
Concept Generation & Selection	19
Mind Map	19
Concepts	
Concept Evaluation	
Device Description	23
Reverse Engineering Process	23
Annotated Exploded View	
Design Structure Matrix	39
Movement Steps and Sequence	39
Critical Elements	40
Clever Ideas	40
Total Cost	
Engineering Analysis	
Engineering Analysis	
Testing	44
Test Report	44
Testing Analysis	60

Risk & Reliability Analysis	
Failure Modes and Effects Analysis	62
Fault Tree Analysis	
Improvements	65
Service & Support Plan	66
Service & Support Plan	66
Project Plan	67
Project Plan	
Gantt Chart	
Team Assessment	
Team Contract	
Team Role Test Results	
Team Health Assessments	
Failure Analysis	
Failure Analysis	87
References	89
References	89

Table of Figures

Figure 1: Final Model of Competition Fixture	5
Figure 2: Top View of Device	6
Figure 3: Quality Function Deployment for Device Overview	7
Figure 4: iRobot Image	11
Figure 5: Milwaukee M18 Vacuum Image	12
Figure 6: QFD Specifications for Device	14
Figure 7: QFD Specifications Tradeoffs	18
Figure 8: Concept Generation Mind Map	19
Figure 9: Annotated Exploded View	38
Figure 10: Design Structure Matrix	39
Figure 11: Electrical Circuits for Each Component	40
Figure 12: Competition Ready Device Total Cost	41
Figure 13: Equation for Gearing Down Motors	42
Figure 14: Sample Circuit for Arduino with Sensor and Motor	42
Figure 15: Direction of Airflow to Create Powerful Suction	43
Figure 16: Failure Modes and Effects Analysis	62
Figure 17: Fault Tree Analysis for Device	63
Figure 18: First Vacuum Inlet Prototype	65
Figure 19: Second Vacuum Inlet Prototype	65
Figure 20: Initial Gantt Chart	75
Figure 21: Final Gantt Chart	75
Figure 22: Team Role Test Results for Anna Buckley	79
Figure 23: Team Role Test Results for Daniel Pelphrey	80
Figure 24: Team Role Test Results for Alaina Bentley	81
Figure 25: Team Role Test Results for Ryan Blake	82
Figure 26: Team Role Test Results for Mason Adams	83
Figure 27: Final Vacuum Assembly	87
Figure 28: SolidWorks Model of Castor Wheel Hinge	88

Table of Tables

Table 1: Concept Drawings and Descriptions	20
Table 2: Concept Evaluation Against Competitors and Device Specifications	22
Table 3: Test Results Summary	60
Table 4: Safety Analysis and Evaluation	64
Table 5: Service and Support Plan	66

Design Problem Statement

For this semester's project, students were tasked with creating an autonomous device that could compete against other devices to vacuum up the most debris. The competition fixture was constructed with wooden boundaries, which resembled a large sandbox, that contained debris such as sand, screws, and marbles. The sides of the arena were around 3.5 inches tall with an internal area of 64 square feet. Each match was 2 minutes long.

Figure 1: Final Model of Competition Fixture

In terms of competition eligibility, students were given a fair amount of creative freedom to design their device in any way they deemed fit as long as it stayed within the requirements outlined below:

- Device must not exceed 12 inches in length and 12 inches in width
- Dimension must not change greater than 1 inch after movement has been initiated
- Must maintain one contact point with the floor at all times
- Must only have one movement prompt for initialization

The device would win the match if:

- Device collects more debris (grams) than the opposing team
- If neither team is able to collect debris, the device that moves the farthest

Specifications Development

Target Customers

The vacuum cleaner has been a staple for household users since its invention over 100 years ago. As of recently, companies have started designing vacuum cleaners that can function all by themselves and the market has drastically changed since. With the increase of consumers desiring autonomous vacuums, this product could potentially have a large customer population.

The intended target customers for this device are people with a need to vacuum with ease. However, it is understood that there are a variety of professional products on competitors shelves, so in reality, this product was mainly designed to compete against all the other groups within the MECH 202 class who had to abide by the same competition requirements. Therefore, the primary intended users of this device are those in MECH 202, Group 9, which also happens to be the developers of the product. The fact that the people who were going to use the device the most were the same people designing and building it made it easier to consult the users to see what the most important factor and specifications for the device functionality were.

Figure 2: Top View of Device

Figure 3: Quality Function Deployment for Device Overview

Customer Requirements

Design Organization: DC Team 9

Date: 12/3/2022

Product: Automated Vacuum Cleaner

Who:

1. Who are the primary users of the product?

Household users, commercial users, instructor, judges, and peers.

2. What skills or education will the primary users have?

Users may have any background, no advanced education experience is necessary. Skills needed are basic reading skills and common knowledge of working with an electronic device.

3. Describe any primary user physical conditions that affect the design of the product.

Product is very user friendly, user only needs to use one switch to turn on, as well as have the ability to un-attach the fan and motor to empty out the debris compartment.

4. Who will purchase the product?

Users with a need to clean any sort of surface.

5. Who else is a stakeholder in the design of the product?

Our teacher and our judges.

6. Describe any cultural practices or customs related to the product.

Customers would need to have the means to have a clean space.

7. How much is the purchaser willing to pay for the product?

Product is relatively cheap, users should be expected to pay around \$50 for the product.

8. How much is the user willing to pay to operate the product?

For operation, only batteries are needed.

 How much is the user willing to pay to maintain the product? User should expect to replace batteries, tires and motors over a longer period of time, all of which can be found at stores. Around ~\$20 annually.

How:

1. For what specific purposes will the product be used?

Product is used for vacuuming surfaces without having to do the work of moving around.

2. What is the current process used?

Only a switch needs to be initiated, and product will work. After use is fulfilled, empty out debris container into trash.

3. How often will it be used?

Depending on demand, customer can use product often, but likely once or twice a month will be standard.

4. How long will it be used each time?

Product is made to last around 5 minutes before motor will need to cool down.

5. Describe the quality expected by the user.

User expects the product to be easy to use and work decently well to have a clean surface. 6. How far, how often and in what way will product be transported?

The product does not need to be transported very often, only into and out of storage for use. Where:

1. Describe the surroundings for normal use.

Possibly a messy surface, and lots of obstacles it will have to maneuver around.

2. Describe the noise, weather, temperature or other environmental factors that may affect the design of the product.

Product should not be around any sort of water because that will cause it to break and likely short out the circuits.

3. No	Describe any size or weight limits othing should be placed on top of the	vacuum, could cause the torque to be too much for the
mo	otors to power and could stop moving	g.
4.	Describe the aethetics of the use s	surroundings.
Pro	oduct can be used in any room in the	house, preferably places with hardwood floor or carpet.
5.	Describe the energy available wh	en the product is in use.
En	ergy available is battery power.	
Cu	stomer Requirements (include ho	w well the product fulfills each requirement):
1.	Vacuum debris of varying size. Pro debris. Can fit up to 0.6 in diameter	duct does this well, depending on the weight of the r debris.
2.	Autonomous. Product does this ver	y well.
3.	Sense debris and room boundaries. boundaries are above 3 inches off t	Product can sense room boundaries well as long as the he ground. Not very good at sensing the actual debris.
4.	Store debris in removable comparts all debris in it.	ment. Compartment is removable and the product stores
5.	Long battery life. Battery life is oka	ay, not great since the motor often overheats.
6.	Run on multiple surfaces. Very goo hardwood floor. Product can run or	od at running on sand from competition fixture and a short carpet but not long carpet.
7.	Reasonable price. Product was ches	ap to manufacture. Sales price should not be too high.
8.	Appealing design. Product is painted	ed purple, and all parts complement the color.
9.	Safe for children. User should not l there are lots of wires exposed.	et children play around with the device too much, as
10	Manual Start is easy and only one i	novement needed to initiate.
W	ho Else (List other products that f	ulfill the requirements):
1.	Roomba	
2.	Dyson	
3.	Bissell	
4.	Shark	
5.	Sanitaire	
Te	am member: Alaina Bentley	Team member: Ryan Blake
Te	am member: Anna Buckley	Prepared by:
Te	am member: Daniel Pelphrey	Checked by:
Te	am member: Mason Adams	Approved by:
100	e Mechanical Design Process	Designed by Professor David G. Ullman

When developing the customer requirements, there were a few factors that were taken into consideration. The first of which being personal knowledge. If a vacuum were to be purchased, what would be the main goals for it? It can be said that a customer would want a reliable, safe product that will suction up what they desire. Another factor considered was competing products. When developing a product similar to some already made in industry, those requirements can also be similar. A customer that already has a competing product would ask "Why is this one better than mine and why should I buy it?". This is where the appealing design and reasonable price were decided as a requirement. The requirements listed above are the baseline, while it is acknowledged that there could be many more factors customers consider before purchasing a new device.

Device Competitors

Figure 4: iRobot Image

iRobot (Roomba):

The industry leader for autonomous vacuums is the Roomba produced by iRobot [3]. iRobot gives their own specifications and description of their product. The Roomba is 13.3" wide (would not meet competition regulations) and is powered by a lithium ion battery. It uses a brush system in combination with a vacuum system in order to clean. This was something that could definitely be implemented into the design of the competition robot. The Roomba can avoid obstacles and pet messes, and does not require cleaning up by hand prior to use. A reverse engineering report [4] for an older model roomba was also referenced. This revealed that a bumper sensor system was used to detect obstacles. One drawback of this is that it requires the robot to make contact with objects, rather than avoiding them completely which would be a safer way to operate.

Figure 5: Milwaukee M18 Vacuum Image

Milwaukee M18 FUEL PACKOUT 18-Volt Lithium-Ion Cordless Shop Vacuum:

Another product that was analyzed during the research phase was this battery powered shop vacuum. While it did not meet our requirement of being automated, it is designed for picking up more similar material to the competition (sand, screws, etc.). Milwaukee [4] reports that it measures 17"x10" so it also would be disqualified from the competition. The vacuum runs on an 18V lithium ion battery, and reviews report that it easily suctions up shop debris and matter. This would perfectly need this customer requirement for the competition despite not meeting any of the others. The competition robot likely would require a similar amount of power in order to generate the suction needed to lift the competition debris. The vacuum system developed for the competition will also likely resemble this shop vacuum more than the vacuum system on the roomba, however, it would obviously require the movement system to be added.

Specifications

There are 10 demanded qualities by the targeted customers. They are as follows:

- 1. Suction debris of varying size
- 2. Autonomous
- 3. Sense and avoid room boundaries
- 4. Store debris
- 5. Long battery life
- 6. Traction on multiple surfaces
- 7. Reasonable manufacturing price
- 8. Appealing design
- 9. Safe for children
- 10. Manual start

Along with these qualities, 15 engineering specifications were developed. These are as follows:

- 1. Length of device
- 2. Width of device
- 3. Manual start via switch
- 4. Battery
- 5. Self contained unit
- 6. No human input after start
- 7. Programmed sensors
- 8. Clearance under wheels
- 9. Detachable Compartment
- 10. Weight of device
- 11. Speed of device
- 12. Battery Life
- 13. One contact point with ground
- 14. No damage to competitors or boundaries
- 15. No adjusting after initiation

Quality Characteristics (a.k.a. "Functional Requirements" or "Hows") Demanded Quality (a.k.a. "Customer Requirements" or "Whats")	Length	width	Manually Start via Switch		Battery	Completely self contained unit		No human innut required after start		Programed sensors to detect boundaries	and other devices (arduino)	Clearance under wheels		Detachable debris container		Weight		Sneed		Batteriv life		Always have at least one contact point with	TIOOL	Must not damage other devices or boundary		Barely adjusts after turned on
Vacuum up debris of varying size	*	-		2	*				*	0	•	Θ	*	0			*		*		•		×			
Autonomous	*	*	0 -		*	Θ	¥	Θ	*	Θ	*		٣		٠	2	٣		*		*		٠		0	-
Sense the debris and room boundaries	Ŧ	*			٣		٣	Θ	•		*		*	Θ			•		-		٠		×	0 -	1	*
Store the debris in replacable compartment	*	-		с. С	Ŧ	0	Ŧ	Θ	•	0	Ŧ		•			54	Ŧ		*		*					
Long battery life	*	-		Θ	Ŧ		٣		*		*		٣		٠		٣		*	Θ	٣		٣		(*
Run on mutiple surfaces	*	-			*		*		*	0	*	Θ	*		*		٠		*		*		*			*
Reasonable price	*	-	्य	Θ	*		٣		*	0	٣		Ŧ		*		Ŧ	0	*	Θ			×			
Appealing design	*	-		ŝ	Ŧ	Θ	٠		*	0	*		Ŧ	0	+	0	*		*		٣		*			*
Safe for children		-		2		5			*				•			Θ	*					6				
Manual Start	*	-	Θ -	6	Ŧ		¥	0	٣		*		v		٠		٣		*		×.		٠		0	*

Figure 6: QFD Specifications for Device

Suction Debris of Varying Size

This quality is satisfied by the specifications regarding the size and weight of the device. By quantifying the measurements of the device, it is able to have a certain size of both the vacuum inlet and the debris container. In order to set the diameter of the vacuum inlet, it is necessary to know the maximum size of expected debris, and this was done in the practice arena set up by the professor prior to the competition. Once the maximum size was determined, constraints regarding the size of the inlet and the weight of the device was set.

Another specification that helps satisfy this quality is having clearance under the wheels. After having the size of possible debris, it is important to ensure the device has slightly more height under the wheels, so that it can drive over the debris without high centering itself.

Autonomous and Sensing Room Boundaries

These two qualities are satisfied by three of the specifications. This includes the self contained unit, no human input after start, and programmed sensors. To be a completely autonomous device, there must be a "brain" able to communicate with the rest of the device to

prevent damage or unnecessary movements. This "brain" comes from the programmed sensors, which send high frequency waves and wait for them to bounce back. This determines how far an obstacle is away from the sensor. With the use of three sensors, the device is able to adjust its movement, preventing any human input, making it therefore a self contained unit.

Storing Debris

As for storing debris, this quality is satisfied by ensuring there is a detachable compartment. This was a main requirement provided by the professor, so it is a crucial specification. Since the debris compartment is removable, the customer will be able to dispose of the debris in an easy manner. It is also important for the competition so the debris could be emptied and quantified to determine the winner.

Long Battery Life

Satisfying the long battery life quality depends on the battery chosen. To ensure a long battery life, a 6V battery was used for the wheels and 12V batteries were used for the vacuum. The 12V batteries were rechargeable, so they could be used as many times as necessary. This gave the vacuum full power at all times, so the air flow and suction was at its strongest. For the wheels, 6V batteries are very common, and there were multiple batteries purchased so they could be easily replaced if needed.

Traction on Multiple Surfaces

In order to satisfy this quality, the specifications used were the speed of the device and having one contact point with the ground. Having a slow speed is important for traction because the slower the device moves, the less likely it is to slide on the surfaces. However, if the speed is not fast enough, it could also get stuck on certain debris. Finding this balance was a crucial specification to make. Having contact with the ground is also clearly important, because if not, the device would have no traction and would just be flying.

Reasonable Manufacturing Price

To consider the cost of manufacturing, the parts purchased are an important specification. For this project specifically, the battery was the main constraint to make. Batteries can get wildly expensive, so it was crucial to ensure the batteries used would have a long life and be strong enough to power what was necessary. If the battery were to have a short lifespan, then the voltage would significantly decrease and more would have to be purchased to have a useful final product.

Appealing Design

For this device to have the appealing design quality, it had to meet the self contained unit specification, as well as the weight of the device. It could be appealing to a customer to have a unit that is not reliant on their individual input. If a customer is looking for a vacuum, the goal is for this device to be appealing based on its self contained unit. The other specification is the overall weight of the device. Many customers want a lighter product, so if the weight is minimized, it may be more desirable to a customer.

Safety

Every product needs to be safe. There are laws that ensure a product is safe before it can be given to consumers. For this device, it is completely self contained and it is programmed to cause no damage to obstacles or competitors. Both of these specifications provide safety to a consumer and safety to the competitors. As long as the device is not exposed to water or unsafe conditions, it is a safe product.

Manual Start

The manual start quality is satisfied by the self contained unit and the manual switch specifications. Due to the nature of the competition, the device must take only one human input to turn it on and then absolutely no human input until the competition is over. Because of this, it was designed to have one switch to initiate both the wheels and the vacuum motors.

Specifications Tradeoffs

Some of the specifications for the automated vacuum share an inverse relationship. This means that in order to meet some of these standards, other aspects of the device had to be sacrificed to varying degrees. Some example of this are listed below:

Device Power Output vs. Battery Life

The amount of power being generated by the different motors used on the device has an inverse relationship with the battery life. Obviously it was a goal to generate as much suction by running the most powerful motor for our fan, and using the most powerful drive motors to move the vacuum, however these were both limited by the need to have sufficient battery power to run the device for 2 minutes at a time and recharge it back to competition ready levels in 15-20 minutes.

Sensory Ability vs. Price

Another set of specifications that required a tradeoff were the quality of our sensors and the amount of money spent on the project. High quality sensors would have been very useful to make the vacuum as efficient as possible in navigating the arena, however, due to cost limits, donated ultrasonic sensors were used to keep the project within the budget. This in turn led to some issues with the sensors failing and not always reading reliable information. The likelihood for error grew when using these donated sensors.

Device Size vs. Debris Storage

Based upon the rules of the design competition, it was required to keep the device under a maximum size limit. This obviously limited the debris storage volume possible purely due to the limit on the room available on which to mound it. This did not end up much of a challenge in the design process.

Figure 7: QFD Specifications Tradeoffs

Concept Generation & Selection

In order to start generating concepts for the product, the entire team came together and generated a mind map. This first step was a basic brainstorm involving materials, shapes, and power techniques. The group also discussed how to incorporate competitor designs into the product. After the mind map was complete, each member drew out a concept and explained what was going on and which parts they incorporated from the mind map. After there were four concepts drawn up, further analysis was completed by the entire group. The analysis was completed by going through the customer requirements and deciding which design met the most requirements. The designs that were picked for potential prototyping were the ones that gathered the highest sum of those requirements.

Figure 8: Concept Generation Mind Map

Concept Number	Drawing	Description
1		- The first concept devised was a square-based vacuum with tank-like tires. The vacuum components of this design consist of a motor and fan, powered by a battery circuit with a switch so users can manually turn it on and off. The fan is then connected to a 3D-printed part that includes a storage bin for debris and a split hose design that protrudes from the front of the vacuum. A sensor is placed between the two hoses in order for it to be able to detect any walls or other devices so it can change its path. The wheels for the base are also powered by batteries and separate motors.
2	Critical Control of Co	- The second concept is also a sort of square-based vacuum but instead of tank-like tires, it had regular large tires as would be on a car. The vacuum components of this design consist of three motors and three fans, powered by high voltage batteries. All of which would be connected to PVC piping and a 3D printed component. There is a storage bin for the debris connected near each motor and fan with a filter and a split section for debris to fall into the bin. There is a sensor on the PVC pipe that is on the front in order to detect any walls or obstacles. Every wheel would be controlled by its own separate motor and batteries in order to maximize the steering range.

Table 1: Concept Drawings and Descriptions

Concept	Requir	eme	nts Ana	alysis (0	= W	orst, 5	= Be	est), (1	X = t	arget	hit, (0 = t	arget	miss	eđ)				_									
	Cust	omer	Requir	ements							Tec	hnica	l Req	quiren	nents													
Concept Number	Debris of varying sizes	Autonomous	Sense debris and room boundaries	Replacable debris compartment	Long battery life	Run on multiple surfaces	Reasonable price	Appealing design	Safe for children	Manual Start	Length (12 in)	Width (12 in)	Manual start	Battery	Self contained unit	No human input after start	Programmed sensors	Clearance under wheels	Detachable debris container	Weight (10-12 lbs)	Speed (2-5 mph)	Battery life (2 min)	Contact point with floor	Must not damage boundary or other devices	Small or no adjustments after start	Customer Req Total	Total X	Total O
1	4	3	5	2	3	4	2	2	2	5	Х	х	х	х	х	х	х	Х	0	Х	Х	Х	Х	Х	х	32	14	1
2	5	4	5	3	5	2	3	3	3	1	Х	х	0	х	Х	0	х	Х	Х	х	Х	х	Х	X	Х	34	13	2
3	3	5	5	5	2	3	4	4	3	3	х	х	0	х	Х	х	х	х	Х	х	Х	х	х	X	X	37	14	1
4	3	2	5	4	3	4	3	5	4	5	Х	х	х	х	х	х	х	Х	Х	х	Х	х	х	X	X	38	15	0
Roomba	0	3	4	4	4	3	2	5	4	2																31		
Dyson	3	2	3	3	3	2	1	2	4	4																27		
Bissell	1	1	2	2	4	1	2	5	3	4																25		
Shark	2	4	4	4	4	4	3	4	4	3																36		
Sanitaire	5	0	0	4	0	0	3	3	3	5																23		

Table 2: Concept Evaluation against Competitors and Device Specifications

Device Description

		Prod	uct	Decomp	osition	& Revers	e Engineering						
Desigr	ı Orgai	nization: C	colora	do State Uni	versity		Date: 12/09/2022						
Produ	ct Deco	mposed: A	Auton	nated Vacuu	m		ł						
Descri remov	Description: Our device is an autonomous robotic vacuum cleaner which contains a suction system to remove dirt and debris from the floor combined with sensors and a programmed cleaning route.												
How is works lithium battery on and flow u larger second easily driver The As at the f Arduin device activat Bill of	How it Works: This vacuum consists of two main components. The first is the vacuum component which works on account of the suction produced from a fan and motor. The motor is connected to a rechargeable lithium-ion battery which supplies it enough power to rotate at a high RPM. The circuit that connects the battery and motor contains a switch, that opens and closes the path, to allow the user easier access to turning on and off the device. The motor is then connected to a fan which spins in the correct direction to create air flow up through the device generating the desired suction. The fan is attached to a filter, which prevents larger debris from damaging the fan, and a hose/debris container that redirects the suction to the floor. The second component is the base. The base is constructed out of wood so that all the other desired parts can be easily attached. There are four caster wheels which balance and stabilize the base, and two driver wheels. The driver wheels are each connected to a motor, fastened on the bottom of the base, that is wired to a battery. The Arduino at the center of the base is connected to both batteries and three sensors. The sensors are placed at the front of the base and programmed to detect when the device is a certain distance away from a wall. The Arduino is programmed so that when no wall is detected, both batteries are supplied power to make the device go straight. When a wall is detected the Arduino only sends power to the corresponding battery to activate one wheel which allows the device to turn and avoid collision.												
Item #	Mfg. Part #	Part Name	Qty	Material	Mfg. Process	Procuremen t Source	Image						
1	-	Base	1	Wood	Machinin g	Home Depot							
2	-	Caster Wheels	2	Plastic/Meta 1	Premade	ACE Hardware	63						

3	a16010600ux0130	Wheel Motors	2	Metal	Premade	Amazon	
4	B09KDC79D	Wheels	2	Rubber	Injection Molding	Amazon	
5	-	Wheels Support	2	PLA	3D Printing	I2P	
6	A000066	Arduino	1	Metal	Premade	CSU	

7	2234-HC-SR04-ND	Sensors	3	Metal	Premade	CSU	
8	-	Breadboar d	3	Plastic	Premade	CSU	
9	-	9V Batteries	4	Metal	Premade	Walmart	
10	JK908800013117	Fan Batteries	2	Metal	Premade	Walmart	Contraction and and and and and and and and and an

11	-	Circuit Switch	2	Metal	Premade	ACE Hardware	<text><text><text><text></text></text></text></text>
12	-	Switch Connector	1	PLA.	3D Printing	I2P	
13	CHV1410	Vacuum Motor	1	Metal	Premade	Walmart	Proprietorial in
14	-	Vacuum Fan	1	PLA	3D Printing	I2P	

15	-	Fan Filter	1	Cloth	Premade	Walmart	
16	-	Fan⁄ Motor Holder	1	PLA.	3D Printing	I2P	
17	-	Debris Container	1	PLA	3D Printing	I2P	

18	-	Wiring	N/A	Wire	Premade	CSU			
19	-	Screws	16	Metal	Premade	ACE Hardware	Ar Januaran		
Disass Step	embly: Procedure				Item #		Image		
#					Removed		8-		
1	-Ren	-Remove all wiring from device							
2	-Detach vacuum fan/motor holder from debris container				16				

3	-Remove vacuum fan/motor from fan holder	13/14	
4	-Unfasten hose/debris container from base	17	
5	-Separate motor batteries from base	2	

6	-Detach 9V batteries from base	9	
7	-Separate switch connector from switches	12	
8	-Remove switches from base	11	
9	-Pull off breadboards from base	8	

10	-Pull Arduino off of base	6	
11	-Unvelcro sensors from base	7	
12	-Remove wheels from motors	4	
13	-Unfasten motors from wheel supports	3	P

14	-Unscrew wheels supports from base			5		
15	-Unscrew caster wheels from base		2	8	25	
Interf	aces with Oth	er Objects (Fi	lows of I	Energy, In	formation, a	nd/or Materials):
Item #	Interface	Energy	Infor	mation	Material	Image
1	2	-		-	-The caster wheels are in direct contact with the base and held in place with screws	
1	5	-	-		-The wheel supports were screwed into the base and held the wheel motors at the correct distance from the ground	

1	7	-	-	-The sensors were secured onto the base with Velcro	
1	9	-	-	-The 9V batteries were just placed directly onto the base	
1	10	-	-	-The fan batteries were taped to the base to ensure that they don't move during operation	
1	17	-	-	-The debris container fit directly into the hole cut in the base	

1	6,8	-	-	-The Arduino and breadboards were all secured onto the base with Velcro	
3	4	-The rotational energy from the axel of the motor was transferred to the wheels which allowed them to rotate	-	-The wheels were super glued to the axes of the motor	
5	3	-	-	-The wheel motors were pressure fitted into the hole in the wheel supports	
6	7,8,3	-	-The sensors would send the information it received from its surroundings to its breadboard which would then send it to the Arduino. The Arduino would then tell the correct breadboard to supply its motor with power	-The Arduino, sensors and breadboards were connected with wires	

_						
	6	9	-The Arduino was individually powered with a 9V battery	-	-The 9V and Arduino were connected with wires	
	12	11	-As the switch connector was activated, both switches would be able to close their corresponding circuits	-	-The switches and connector were super glued together	
	13	10	-The power from the batteries would supply the motor with the correct voltage to allow it the start spinning	-	-The motor and batteries were connected with wires	
	13	11	-As the switch was activated, the circuit would close, allowing the power to be supplied to the motor	-	The switch and motor were connected with wires	
					1	
----	----	---	---	---	---	
13	14	-The rotational energy from the axel of the motor was transferred to the fan, allowing it to spin and create suction		-The fan and motor were secured together with hot glue		
16	13	-	-	-The motor was held in place by being super glued to the fan holder		
16	15	-	-	-The fan filter was taped onto the bottom of the fan holder to stop the bigger debris from damaging the inner components of the vacuum		
16	17	-	-	-The debris container was pressure fitted to the fan holder to allow it to be removed during competition		

18	6,9,8,11,3,7	-The wires connecting all the drive train components allowed power from the batteries to move to and activate all the components	-The wires allow all the informati received from t sensors received sent back and fo between the Arduino and th motors	ved on to to rth place with solder				
18	10,13,11	-The wires connecting all the vacuum components allowed power from the batteries to move to and activate all the components	-	-The wires were all secured in place with solder				
Team	member: Anna	Buckley	/·	Team member: .	Alaina Bentely			
Team	member: Dani	el Pelphrey]	Prepared by:				
Team	member: Ryan	Blake		Checked by:				
Team	member: Masc	on Adams		Approved by:				

The Mechanical Design Process

Copyright 2018, David G. Ullman

Annotated Exploded View of Device

Figure 9: Annotated Exploded View

Design Structure Matrix																	
Tasks	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Vacuum Up Debris of Varying Size	1	1															
Autonomous	2		2														
Sense the Debris and Room Boundaries	100	Х		3													
Store the Debris in Replicable Compartment	4	Х		Х	- 4												
Long Battery Life	5				Х	5											
Run on Multiple Sources	6		Х			X	6										
Reasonable Price	7				Х	X		7									
Appealing Design	8								8								
Safe for Children	9		Х						X	9							
Manual Start	10		Х				X			Х	10						
Sense Boundaries and Other Devices	11	Х	Х									11					
Removable Storage	12				Х								12				
Turn in Any Direction	13		Х				X	X			Х	Х		13			
Strong Enough Suction	14	Х			Х				X						14		
Large Enough Storage Compartment	15	Х			Х								Х			15	
Stay within 12"x12" Size Requirement	16				Х		X	X	X							X	16

Figure 10: Design Structure Matrix

Movement

The automated vacuum will be supported by a total of four wheels. There will be two castor wheels that are strictly for support and will be located towards the edges of the vacuum. Along with the castor wheels, will be two power driven wheels near the center of the base that move the device. Both wheels will be fixed in position and face directly towards the arc on the front of the device. They each are powered by a 6V DC motor that will be receiving power from a 6V battery. The motors are designed to be at a slow speed (around 1-2 MPH) depending on the amount of final torque the device generates. An arduino will be installed so that a programing can be uploaded to allow the device to turn when it senses an obstacle, the device will turn by supplying power to only one wheel in order to rotate in place much like a zero-turn lawn mower does.

Navigation

A front mounted ultrasonic sensor will also be wired to the arduino. Code will be written so that when the sensor reads that it is in contact with an obstacle. The device will turn a varying amount of degrees before resuming forward motion. The amount by which the device will rotate will be different each time it reaches an obstacle to prevent the device following the same pattern and not collecting any new debris.

Debris Collection

An electric DC motor powered fan vacuum will be fixed centered on top of the base with the mouth of the intake facing towards the front of the device. Attached to the fan portion will be the debris compartment, which will have the ability to be removed from the fan portion. The vacuum hose will be attached to the debris collector. This hose will then allow the air, as well as the debris to be pulled into the debris compartment and be collected for disposal. There is a filter attached to the fan compartment that will keep the debris out of the fan and push it back into the debris compartment if necessary. It is all powered by one battery attached to the fan motor.

Critical Elements

A wood base/frame will provide the support to which both the vacuum and drive components will be fixed. This should provide adequate strength to survive a low velocity impact with a wall or another robot, as well as allow mechanical components to be securely drilled into and fixed together. A laptop computer will also be necessary to write and upload the code to the arduino for navigation. This will not be actively used during the competition.

Clever Ideas

An idea that was implemented from the very beginning of the design process was designing each component (vacuum/base) separately so every component wouldn't have to be powered and wired to the same power source. Instead each component was created separately with switches that opened and closed their respective electrical circuits individually. Then a component was 3D printed to turn both switches at once so each component was turned on at the same time.

Figure 11: Electrical Circuits for Each Component

Design Competition Team 9:	Total Cost	
Vacuum		
Motor/Batteries	\$18.99	
Motor Casing	Free	
Debris Container (Prototypes + Final)	Free	
Switch	\$3.99	
Base		
Wood	\$27.99	
2X Motor	\$11.49	
Wheels	\$12.99	
Wheel Supports	Free	
Castor Wheels	\$5.59	
Arduino	Free	
3X Breadboards	Free	
Switch	\$3.99	
3X Sensors	Free	
4X 9V Batteries	\$11.99	
Wiring	Free	
Total Cost	\$97.02	

Total Device Production Cost

Figure 12: Competition Ready Device Total Cost

This cost breakdown includes all the parts used to fabricate the competition ready device, Most of the cost comes from a few key portions. This includes the motor for the vacuum, the wood used for the base, and the myriad of batteries. These were the parts that were impossible to make from scratch without sacrificing the reliability of the device. The parts that were "free" were mostly parts that were 3D modeled in SolidWorks, and then printed in the CSU Idea2Product lab. The other "free" parts were given to groups before the project started, including the wiring and arduino. Because these parts were free to the students, it was favored over purchasing parts that were premade due to the cost restriction.

After compiling the prices for all the products used during the semester, including the parts that were produced and did not make it into the final device, it was determined that the total cost of manufacturing this device was \$97.02.

Engineering Analysis

In the process of designing this machine, many engineering concepts and processes have been applied. Technical skills developed in MECH201(Engineering Design 1) allowed for the creation of SolidWorks models for the prototype. Dynamics concepts were used to calculate the gearing for the motors in order to have the device move at the proper velocity and in the right direction.

Figure 13: Equation for Gearing Down Motors

Statics concepts were applied in order to maintain the structural integrity of the device.

The methods practiced in introduction to mechanical engineering were used to design the

arduino control system plan to control the machine.

Figure 14: Sample Circuit for Arduino with Sensor and Motor

Several human resources have been utilized to gain insight on some of the best approaches to the design. This class has provided many guidelines and templates for useful design creation tools like the Design Structure Matrix and idea generation strategies. The group reached out to a remote control car shop owner who works with small electric motors professionally.

When coming up with the design for the mouth of the vacuum assembly, the group started out with a rectangle angled at 45° in relation to the ground. When going through initial testing it was found that the geometry of the prototype prevented substantial airflow to create the desired suction to get the sand and other debris to enter into the vacuum assembly. Additionally, it was determined using knowledge of thermodynamics that more effective suction could be achieved by reducing the area of the mouth's opening. The design was later changed to a smaller, circular opening that is positioned perpendicular to the ground. This allowed for the device to have much more effective suction when testing and competing, and resulted in a pair of victories in the tournament.

Figure 15: Direction of Airflow to Create Powerful Suction

Testing

	Te	st Rep	ort			
Design Orga	nization: C	CSU DC 1	Ceam 9		Date: 10/23/20)22
Device or system tested: Au	tomated Vacu	ıum				
Objective of experiment (En Length	igineering Sp	ecifications	to be ve	rified):		
Methods and Materials (or E	Equipment): T	`ape Measu	re			
Experimental Procedure: 1.) Ensure device is stat: 2.) Use tape measure to 3.) Record and plot data 4.) Repeat test 5 times	ionary measure leng	th of devic	e			
Results:						
		Length				
12.02						
11.98						
11.96		•				
E 11.94						
E 11.9				•		
<u>9</u> 11.88						
11.86						
11.04		•				
11.8						
0	1	2 3 Test Samp	4 le	5	6	
Discussion: To ensure that o	our device me	t the requir	ed specif	ication	of being under 12" in	
length the experimental pro	cedure was d	eveloped a	nd nerfor	med W	le each took turns	
measuring the length and red	corded our fir	dinge	io perior	inco. vi	e caen took tams	
incastring the length and let		ioings.				
Analysis: Based on the data with the variety of test result stemmed from each testers r	above, even ts, that nethod and	Interpreta is under 1 competitie	tion: By 2" we ca	ensurin n be cei	g that our devices leng rtain that it abides by t	gth the
reading of the tape measure, ensured that the device is un length.	it can be ider 12" in	competiti	. 14165.			
L		L				

		T	'est I	Repo	ort			
Design Or	ganiz	ation:	CSU	DC T	'eam 9)		Date: 10/23/2022
Device or system tested:	Autom	ated Va	cuum					
Objective of experiment	(Engine	eering S	pecific	ations	to be v	erified)):	
Width								
Methods and Materials (or Equip	pment):	Tape 1	Measu	re			
Experimental Procedure:								
1.) Ensure device is a	stationa	fy cura wi	dth of	davica				
3) Record and plot d	lata	ISULC WI	uui oi o	uevice				
4.) Repeat test 5 time	es							
Poguita:								
Results.			Wid	lth				
11	84							
11	82		•					
E 1	1.8				•			
Ndth M	78							
- 11	76	•				•		
11	72							
	0	1	2	3	4	5	6	
			Test	Sample				
Discussion: To ensure th width, the experimental p measuring the width and	at our d procedu recorde	levice n re was ed our f	net the : develop indings	require ped and	ed speci d perfor	ificatio: med. V	n of be Ve eacl	ing under 12" in h took turns
Analysis: By analyzing to even with the variety of to stemmed from each tester reading of the tape measured ensured that the device is width.	he data est resu rs meth ure, it ca under	above, ilts, that od and an be 12" in	Inte is u com	rpretat nder 12 ipetitio	ion: By 2" we c on rules	ensuri an be c	ng that ertain t	our devices length that it abides by the

Analysis: Based on the results from the tests, we can be certain that each component has a working switch that can be activated to turn the device on and off. Interpretation of the compet components of with one swit 3D printed de they can both

Interpretation: After further research into the rules of the competition, we now know that all the components of the vacuum need to be turned on with one switch. This can be remedied by created a 3D printed device that goes over both switches to they can both be turned on at the same time.

	Te	st Rep	ort			
Design Or	rganization: C	CSU DC	Геат	9		Date: 10/23/2022
Device or system tested:	Automated Vac	uum				
Objective of experiment Completely Self Contain	(Engineering Sp ed	ecification	s to be v	verified)	:	
Methods and Materials (or Equipment): N	V/A				
Experimental Procedure: 1.) Observe device to 2.) Record data 3.) Repeat test 5 time	o ensure all comp es	ponents are	secure	d togeth	er	
Results:	Self	Contained	0 = No, 1 =	Yes		
1.2 (0,1) (1,1	• •	•		•		
0.2	1 2	3 Test Sample	4	5	6	
Discussion: To ensure th self-contained unit, the e turns examining the devi	at our device me xperimental proc ce and recorded	t the requir cedure was our finding	ed spec develog s.	ification ped and	ı of bei perforr	ng a completely ned. We each took
Analysis: Based on the re tests, the team concluded certain that our device re completely self-containe the race, meaning no teth material, nor physical sep components during opera	esults from the I that we can be mains a d unit during ters, loss of paration of ation.	Interpreta a comple certain th rules.	ition: B tely self at we a	y ensurin f-contain re abidin	ng that ied dev ig by th	our device remains rice, we can be ne competition

	Te	st Re	port	t			
Design Organ	nization: C	CSU DO	C Tea	m 9			Date: 10/23/2022
Device or system tested: Aut	omated Vacu	um					-
Objective of experiment (Eng Battery Power	gineering Sp	ecificati	ons to	be ve	rified)	:	
Methods and Materials (or E	quipment): N	/lultimet	er				
Experimental Procedure: 1.) Separate battery pack 2.) Connect correspondin 3.) Record and plot volta 4.) Repeat test 5 times	from device Ig nodes of r ge	e nultimet	er to ti	ie cor	rect te	rmina	ls
Results:	E	Battery Pov	ver				
10.82 10.8 10.7 10.75	•						
10.74 0 10.72 10.7 10.7 10.68				•	•		
10.66	0 1	2 Sample	3	4	5	6	
Discussion: To ensure that ou operated with a battery that s and performed.	ur device me upplies 12-1	ets the d 5 volts,	levelop the exp	oed teo perimo	chnica ental p	l spec: roced	ification of being ure was developed
Analysis: Based on the findin the tests, we concluded that the supplied from the batteries we significantly lower than experience also found that as the device the battery power decreased significantly with each usage	igs from he power as cted. We was used,	Interpr batteric operate desired needed so the time w	etation es was es at a l suction to dev suction e run t	: Alth lower high e on. Th velop rema he de	tough than e tean a way uins str vice.	the po anticip n RPM n also to rec rong e	wer from the pated, the motor still I to create the realized that we harge the batteries, nough after each

	Test Repo	rt	
Design Organiza	tion: CSU DC T	eam 9	Date: 10/23/2022
Device or system tested: Automat	ted Vacuum		
Objective of experiment (Enginee	ering Specifications t	o be verified):	
Programmed Sensors			
Methods and Materials (or Equip	ment): N/A		
Experimental Procedure:			
1.) Activate device to obs	erve if programmed	sensors work as	specified
2.) Check if both motors i	run with no boundary		
 Check II correct wheel when presented with a 	l is turned off to allo	w device to turn	in the right direction
4) Record data	ui oostacie		
5.) Repeat test 5 times			
Results:	Programmed Senso	rc 0 = No 1 = V+	
12	Frogrammed Senso	15 0-110,1-16	2
1			
0 0.8			
Les/			
50 0 4			
0.2			
0			
0 3	1 2 3	4 5	6
	Test Sample		
Discussion: To ensure that our de	vice meets the devel	oped specificati	on of having
programmed sensors at the front of	of the device to detec	t any boundarie	s, the experimental
procedure was developed and per	formed. We presente	d the sensors w	ith a variety of

procedure was developed and performed. We presented the sensors with a variety of boundaries in different locations to determine if they could send the right information to the Arduino to activate to correct motor.

Analysis: Based on the results of the experiment, we concluded that the written program and wiring for the sensors ensure that the device will not run into any boundaries and turn in the correct direction when sensed.

Interpretation: With the information gathered during this experiment we can now be certain that our devices sensors operate correctly and will allow the device to run smoothly without running into any boundaries or other devices.

]	Cest Rep	ort	
Design Organization	: CSU DC	Team 9	Date: 10/23/2022
Device or system tested: Automated V	acuum		
Objective of experiment (Engineering Clearance under wheels	Specification	s to be verified):	
Methods and Materials (or Equipment)	: Tape Meas	ıre	
Experimental Procedure:			
1.) Ensure device is stationary			
2.) Use tape measure to measure le	ingth of space	e under the base	
Record and plot data			
Repeat test 5 times			
Results:	aranco Undor V	/hools	
3.76	arance onder w	niceis	
3.75			
_ 3.74			
e 3.73			
E 3.72			
ច័ _{3.71}			
3.7	•	•	
3.69	2 8	4 5	6
	Test Samp	le	*
Discussion: To ensure that our device a	meets the dev	eloped specificati	on of having 1.5-2.0" of
clearance under the wheels, the experin	nental proced	lure was develope	d and performed. We
each took turns measuring the length a	nd recorded o	our findings	-
Analysis: Based on the data we	Interpret	ation: With this in	formation our team
recorded during the experiment, even	decided t	o make adjustmer	its to the rest of the
with the variety of test results, that	compone	nts that were supp	osed to fit under the

stemmed from each testers method and reading of the tape measure, we found that the clearance under the wheels was a lot bigger than we had originally planned for.

device accordingly. The vacuum hose length was increased to allow it to reach the floor from this new height.

Design Organization: CS	Date:10/30/22	
Device or system tested: Automated V	/acuum	
Objective of experiment (Engineering Sp Detachable debris container Determine if the debris container can det and securely.	pecifications to be verified): ach <u>from device</u> while still hold	ling all debris safely
Methods and Materials (or Equipment):	Scale	
 Ensure device is held stationary Press ON switch and let device su Turn device OFF and remove deb Watch and determine if any debri If debris is lost, weigh the debris Adjust part if needed Repeat steps 5 times and record d 	uck up some test debris. pris container. s is lost in the process. lata	
Results: #1 Debris lost = 0.23g #2 Debris lost = 0.10g #3 Debris lost = 0.11g Discussion: Part was modified by using of container	#4 No debris lost #5 No debris lost different rubber suction bands in	n order to secure the
Analysis: After a few different tests, we decided the best rubber suction pieces were shaped a little larger than the radius. This gave us the ability to have a more secure and enclosed debris container so the debris would not fall out when being transported from points A to B	Interpretation: We want the rubber suction p possible in order to seal the co debris inside.	iece to be as large as ontainer and keep th

Design Organization: C	SU DC Team 9	Date:10/30/22
Device or system tested: Automated	Vacuum	3
Objective of experiment (Engineering S Weight Device needs to be within <u>10-12lbs</u> bef	Specifications to be verified): npetition
Methods and Materials (or Equipment)	: Scale	
 Experimental Procedure: 1) Assemble the completed device 2) Run the device through a 2 min 3) Weigh the device after the test h 4) Repeat 5 times and record the d 	with all parts ute test run ias been completed ata	
Results: #1 10.1 lbs #2 10.27 lbs #3 10.21 lbs	#4 10.12 lbs #5 10.3 lbs	
Discussion: Only adjustments made du	ring testing was the amount	of debris on the ground
Analysis: After testing, we can acknowledge that	Interpretation: The final weight will dep it will pick up after the c	pend on how much debris completion of its tests.

		lest Repo	rt	
Des	ign Organization: (CSU DC Tea	m 9	Date:10/30/22
Device or syst	tem tested: Automate	l Vacuum		1
Objective of e Speed Overall speed	xperiment (Engineering to be around 2-5 mph	Specifications	to be verified):	
Methods and 1 Tape Measure Stop Watch Experimental	Materials (or Equipment Procedure:):		
1) D	· · · · · · · · · · · · · · · · · · ·		1	
 Run th Use a structure the dis Repeat average 	e completed part along a stop watch to measure th tance t the procedure 5 times a se velocity.	e pre measured e amount of tir nd record the d	distance me it takes for the lata, use equations	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a te velocity.	e amount of tin nd record the d Velocity (ft/s)	distance me it takes for the lata, use equations Velocity (mph)	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a te velocity. Distance(ft) Total Time(s) 30	velocity (ft/s)	distance me it takes for the lata, use equations Velocity (mph) 1.859509091	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a re velocity. Distance(ft) Total Time(s) 30 30	velocity (ft/s) Velocity 2.142857143	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a te velocity. Distance(ft) Total Time(s) 30 30 30	Velocity (ft/s) 11 2.727272727 14 2.142857143 12 2.5	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a se velocity. Distance(ft) Total Time(s) 30 30 30 30 30	Velocity (ft/s) 12 2.142857143 12 2.5 9 3.333333333	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455 2.272733333	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a re velocity. Distance(ft) Total Time(s) 30 30 30 30 30	Velocity (ft/s) 1 2.72727277 14 2.142857143 12 2.5 9 3.333333333 2 3.658536585	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455 2.272733333 2.494463415	device to complete s to compute the
 Run th Use a structure the dis Repeat averag 	e completed part along a stop watch to measure th tance t the procedure 5 times a se velocity. Distance(ft) Total Time(s) 30 30 30 30 30 30 30 30 30 30 30 30 30	Velocity (ft/s) 11 2.727272727 14 2.142857143 12 2.5 9 3.333333333 2 3.658536585 14 2.872399958	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455 2.272733333 2.494463415 1.958459739	device to complete s to compute the
 Run th Use a structure the dis Repeat average Results: Discussion: A the test.	be completed part along a stop watch to measure the tance t the procedure 5 times a ge velocity. Distance(ft) Total Time(s) 30 30 30 30 30 30 30 30 30 30	velocity (ft/s) 1 2.72727277 14 2.142857143 12 2.5 9 3.333333333 2 3.658536585 ity 2.872399958 verage, and do	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455 2.272733333 2.494463415 1.958459739 not account for cl	device to complete s to compute the hanges in speed durin
 Run th Use a structure the dis Repeat average Results: Discussion: A the test. Analysis:	e completed part along a stop watch to measure th tance t the procedure 5 times a se velocity. Distance(ft) Total Time(s) 30 30 30 30 30 30 30 30 30 30 30 30 30	Velocity (ft/s) Velocity (ft/s) 11 2.727272727 14 2.142857143 12 2.5 9 3.333333333 2 3.658536585 ity 2.872399958 Verage, and do	distance me it takes for the lata, use equations Velocity (mph) 1.859509091 1.461042857 1.70455 2.272733333 2.494463415 1.958459739 not account for cl	device to complete s to compute the hanges in speed durin

anization: CS Automated V t (Engineering Sp und 2-5 mph (or Equipment): e: ted part along a p h to measure the edure 5 times and 7.	SUDC Tea Vacuum pecifications ore measured amount of tin	m 9 to be verified): distance ne it takes for the o ata, use equations	Date:10/30/22 device to complete to compute the
Automated \ t (Engineering Sp und 2-5 mph (or Equipment): ted part along a p h to measure the edure 5 times and r.	Vacuum pecifications ore measured amount of tir 1 record the d	to be verified): distance ne it takes for the ata, use equations	device to complete to compute the
t (Engineering Sp und 2-5 mph (or Equipment): e: ted part along a p h to measure the edure 5 times and 7.	pecifications ore measured amount of tir 1 record the d	to be verified): distance ne it takes for the ata, use equations	device to complete to compute the
(or Equipment): e: ted part along a p h to measure the edure 5 times and 7.	ore measured amount of tir I record the d	distance ne it takes for the ata, use equations	device to complete to compute the
e: ted part along a p h to measure the edure 5 times and 7.	ore measured amount of tir l record the d	distance ne it takes for the ata, use equations	device to complete to compute the
t) Total Time(s)	Velocity (ft/s)	Velocity (mph)	
30 11	2.727272727	1.859509091	
30 14	2.142857143	1.461042857	
30 12	2.5	1.70455	
30 9	3,333333333	2.272733333	
30 8.2	3.658536585	2.494463415	
Average Velocity	2.872399958	1.958459739	
es shown are ave	rage, and do	not account for ch	anges in speed during
	Interpretati		
wall average	Since the d	IOII. Iomiopio alorre mo	anuld gat a stranger
nimum 2 mnh	motor that	can handle more t	orque or we could
is is due to its r. If we want the leed a stronger	reduce the	weight of our dev	ice.
	11 10 14 10 12 12 10 12 10 9 10 8.2 Average Velocity es shown are ave rall average nimum 2 mph is is due to its r. If we want the seed a stronger	11 2.727272727 14 2.142857143 10 12 2.5 10 9 3.333333333 10 8.2 3.658536585 Average Velocity 2.872399958 es shown are average, and do Interpretation erall average Since the domotor that reduce the domot	10 11 2.7272727277 1.859509091 10 14 2.142857143 1.461042857 10 12 2.5 1.70455 10 9 3.33333333 2.272733333 10 8.2 3.658536585 2.494463415 Average Velocity 2.872399958 1.958459739 es shown are average, and do not account for ch rall average Interpretation: sis due to its Since the device is slow, we r. If we want the aeed a stronger reduce the weight of our device the weight of our

Des	ign Organ	ization: CS	SU DC Team 9	Date:10/30/22
Device or syst	tem tested:	Automated V	/acuum	
Objective of e Battery Life Maintain good	experiment (I d speed for 2	Engineering Sp -4 minutes wit	pecifications to be verified): hout recharge	
Methods and Stop Watch Tape Measure	Materials (or	Equipment):		
Experimental 1) Run th 2) Record 3) Repea	Procedure: ne completed d its final dis t 5 times and	device for one tance record its fina	e minute as it drives in a straig Il distance	ht line.
	Time (s)	Distance Trave	eled (ft)	
	60		184	
	60		165	
	60		172	
	60		159	
Results:	60		142	
Discussion: S	traight line ti	raveled with no	o debris. Battery was not charg	ed in between tests.
Analysis: Every distance feet traveled it	e is similar in n the first tes vas 142. The	n range. The st was 184, re was about	Interpretation: Will need to bring extra batte order to keep speed up. We o weight of our device so the r	eries to competition in could also lower the

Design Organization.	CSU DC Team 9	Date.10/50/22
Device or system tested: Automate	d Vacuum	10
Objective of experiment (Engineering Always at least one contact point wit	Specifications to be verified): h floor	
Methods and Materials (or Equipment	i): N/A	
 Experimental Procedure: 1) Drive the vehicle in its complete 2) Observe the device for 2 minut 3) Record if the vehicle stays in of 4) Repeat 5 times. 	ete run with code. tes. contact with the floor.	
Training out	or and did not lose contact	
Each time the device stayed on the flo	στουπά	

Test	t Report	
Design Organization: CSU	DC Team 9	Date:10/30/22
Device or system tested: Automated Vac	cuum	ed L
Objective of experiment (Engineering Spec Must not damage other devices or boundar	ifications to be verified ry	d):
Methods and Materials (or Equipment): Ob	ostacles	
 Experimental Procedure: 1) Run the device in a boundary area v 2) Examine the obstacles and boundari 3) Record any observations to differen 4) Repeat 5 times. 	vith random obstacles ies after 2 minutes. ces in the obstacles an	d boundaries
Results: #1 Small damage to boundary after device 1 #2 No damage #3 No damage #4 No damage #5 No damage	ran into and could not :	move anywhere else
Discussion: The speed was slowed down af	fter the first test.	
Analysis: After redesign was made, the device did not cause any damage to any of the obstacles or boundaries.	Interpretation: Due to decreased speed not have enough speed boundaries/obstacles.	I and power, the device di or force to damage the

De	esign Organiz	ation	: CSU	DC Te	am 9		Date:10/	30/22	
Device or sy	stem tested: A	utoma	ted Vac	uum					
Dbjective of Barely adju	f experiment (Eng usts after turned o	gineeri m	ng Speci	fication	s to be verified	l):			
Methods and Tape Measu	d Materials (or Eo re	quipm	ent):						
Experiment: 1) Mea 2) Reco 3) Run 4) Mea 5) Repo	al Procedure: sure device in len ord all measurement the device for 1 r sure device again eat 5 times and re	ngth an ents minute i in all cord.	id width : areas wh	and heiş ile still	ght while devic powered on.	e is powe	ered off.		
Results:							v1.		
Results: Test Be	fore Running Length		Width	Height	After Running	Length	Width	Height	22
Results: Test Bet	fore Running Length	12	Width 12	Height	After Running	Length 12	Width 12	Height	
Results: Test Bet 2	fore Running Length	12	Width 12 12	Height	After Running	Length 12 12	Width 12 12	Height	
Results: Test Bet 2 3	fore Running Length	12 12 11.5	Width 12 12 12	Height	After Running	Length 12 12 11.5	Width 12 12 12	Height	
Results: Test Bet 2 3 4	fore Running Length	12 12 11.5 11.5	Width 12 12 12 12 12	Height	After Running 4 9 9	Length 12 11.5 11.5 11.5	Width 12 12 12 12 12	Height	
Results: Test Bet 2 3 4 5 Discussion:	fore Running Length	12 12 11.5 11.5 11.5 eted du	Width 12 12 12 12 12 12 12 12	Height	After Running 4 9 9 9 9 9 9 1 1 1 1	Length 12 11.5 11.5 11.5 in betwe	Width 12 12 12 12 12 12 en tests 2	Height	

Test Results

Fifteen total tests were conducted with the mostly complete Vacuum. Every test had different goals in order to ensure desired results were obtained. For each test, five trials were run and all results were recorded either in an Excel graph or spreadsheet. Each test we ran with a "Pass/Fail" result depending on our goal. Here are the 15 test goals summarized:

Test Number and Title	Test Goal	Test Outcome
#1: Length	Ensure the length is within the 12" specification	Pass
#2: Width	Ensure the width is within the 12" specification	Pass
#3: Manual Start	Ensure the manual switch specification is met and guarantee the switch worked	Pass
#4 Battery Power	Ensure the voltage of the battery was within the 12-15V specification	Fail
#5 Completely Self Contained	Ensure the device performed without physical separation of components or loss of materials	Pass
#6 No Human Input After Start	Ensure the device needs no stimulation from human after initiation	Pass
#7 Programmed Sensors	Ensure the device uses all three sensors properly	Pass
#8 Clearance Under Wheels	Ensure device meets the 1.5-2.0" clearance specification	Pass
#9 Detachable Debris Container	Ensure debris container is able to detach from body without causing damage	Pass
#10 Weight	Ensure device is within 10-12	Pass

Table 3: Test Results Summary

	pound specification	
#11 Speed	Ensure device meets the speed specification of being 2-5 mph	Fail
#12 Battery Life	Ensure battery life will last more than 2 minutes for competition	Pass
#13 Always Contact with Floor	Ensure device does not fly or jump around	Pass
#14 No Damage to Boundaries or Competitors	Ensure the device can properly avoid obstacles	Pass
#15 Barely Adjusts After Turned On	Ensure the device meets the <1 in adjustment specification after initiation	Pass

						F	ME	ΞA					
Manual Start	Safe for children	Appealing Design	Reasonable Price	Run on multiple sources	Long Battery Life	Store the debris in a replaceable compartment	Sense the debris and room boundaries	Autonomous	Vacuum up debris of varying size	What is the process step, change or feature under investigation?	Process Step/Input	Te	Pro
Une or born functions will not start when prompted	Electronics could shock or vacuum runs into a child	Customer will not buy	Too expensive or too cheap	Bottoms out when running or cannot drive completely	Battery dies during use	Debris does not collect in compartment or cannot be removed	Cannot sense the room boundaries	Does not move without controls	Suction not strong enough	In what ways could the step, change or feature go wrong?	Potential Failure Mode	Organization Name: am Member Names:	cess/Product Name:
Product will not function properly	Harm a child	No purchase, wasteful	No purchase, wasteful	Vacuum job incomplete if customer requires multiple surfaces	Vacuum job incomplete, messy area	Short-term life or difficult long-term use	Runs into walls, causing damage to room and/or device	Will not move and therefore a pointless product for customer	Will not pick up debris	What is the impact on the customer if this failure is not prevented or corrected?	Potential Failure Effects	DC TEAM 9 Alaina Bentley, Ryan Pelphrey, Mason Ad	Vacuum Cleaner Roo
7	10	2	ω	5	4	6	6	œ	8	SEVERITY (1 ·	10)	Blake	omba
One push lever becomes detached over time	Wires become exposed, sensors fail	Paint wears off, components do not correspond correctly	Too much money spent during manufacturing=high selling price	Weak tire tread over time	Fail to recharge, weak batteries	Air flow does not push debris into storage compartment	Sensors fail, coding errors	Incorrect coding, sensors fail, motors fail	Air loss in vacuum components	What causes the step, change or feature to go wrong? (how could it occur?)	Potential Causes	, Anna Buckley, Danny	
ω	-	-	-	თ	~	2	ω	ω	4	OCCURRENCE (1 - 10)		
and not openly exposed for quicker wear	Wires are covered	Paint is sealed on, all parts were printed in neutral colors	Most parts were 3D printed, keeping manufacturing price low	Tires with strong tread and does not rely on air	Fully charged battery, easy to charge	Strong air flow and little air loss between components	Coding is checked and does not need revision	Coding is checked and does not need revision	Visual Inspection	What controls exist that either prevent or detect the failure?	Current Controls	FMEA	FMEA
~	9	10	6	7	თ	~	თ	6	4	DETECTION (1	- 10)	Check Approv Date	Prepar
168	90	20	3	175	160	96	90	144	128	RPN		, ed By: ed By: (Orig.):	ed By:
Do not try to pry apart components	Keep away from harmful scenes (water, wind, pets)	Make sure all components are packed as close as possible	Make sure all components are packed as close as possible	Do not run on unnecessary surfaces	Charge batteries in between uses	Make sure all components are packed as close as possible	Product should be stored in safe space	Product should be stored in safe space	Make sure all components are packed as close as possible	What are the recommended actions for reducing the occurrence of the cause or improving detection?	Action Recommended		Alaina Bentley
Anna	DC TEAM 9	Alaina	DC TEAM 9	Alaina	Anna	Anna	Ryan	Ryan	Anna and Alaina	Who is responsible for making sure the actions are completed?	Resp.	(Rev.):	
Lever glued and secured on 11/10	Wires covered on 11/12	Paint sealed on 11/8, wires safe checked on 11/11	Components checked and made as closely packed 11/9	New tires, all same size and tread purchased 10/15	3 sets of batteries, charged often	Components checked and made as closely packed 11/9	Coding is confirmed 11/11	Coding is confirmed 11/11	Visual Inspection completed regularly	What actions were completed (and when) with respect to the RPN?	Actions Taken		
-	4	2	-	2	сл	ω	2	4	4	SEVERITY (1 -	10)		
2	ω	2	-	2	~	4	2	2	6	OCCURRENCE	1 - 10)		
2	ω	2	-	-	ω	2	2	ω	4	DETECTION (1	- 10)		
4	36	~	<u> </u>	4	120	24	~	24	96	RPN			

Risk & Reliability Analysis

Figure 16: Failure Modes and Effects Analysis

Fault Tree Analysis

Figure 17: Fault Tree Analysis for Device

Safety

The design of the Autonomous Vacuum Cleaner encountered many different safety concerns throughout the process. The safety analysis is outlined below.

Safety Analysis										
Feam 9				W 0050 IN						
Mishap	Damage to	Mishap Probability	Mishap Severity	Hazard-Risk Index	Criterion	Action Taken to Reduct Hazard-Risk	Updated Mishap Probability	Updated Mishap Severity	Updated Hazard-Risk Index	Updated Criterion
Loose Connection	Product	Occasional	Marginal	11	Acceptable with Review	Check Product Before Use	Improbable	Marginal	16	Acceptable with Review
Loose Parts	Product	Occasional	Marginal	11	Acceptable with Review	Check Product Before Use	Improbable	Marginal	14	Acceptable with Review
Dropped Product	Product	Remote	Critical	10	Acceptable with Review	Careful and Training	Remote	Critical	10	Acceptable with Review
Electric Shock	Personel	Improbable	Negligible	20	Acceptable without Review	Careful and Training	Improbable	Negligible	20	Acceptable without Review
Burn	Personel	Improbable	Negligible	20	Acceptable without Review	Careful and Training	Improbable	Negligible	20	Acceptable without Review
Broken Pieces	Product	Occasional	Critical	10	Acceptable with Review	Check Product Before Use	Remote	Marginal	14	Acceptable with Review
Part Failure	Product	Remote	Critical	13	Acceptable with Review	Check Product Before Use	Remote	Marginal	15	Acceptable with Review

Improvements

There was more than one issue that presented itself throughout the testing of the device. One of the biggest problems was the amount of power that was being supplied to the device. There were a myriad of components that needed a power supply. The two wheel motors, the vacuum motor, and the Arduino board. With all those components, one single battery was not going to do the job. After testing, a decision was made to switch from the one power source to four power sources- one for each component. The vacuum motor received a 12V motor, while everything else utilized 6V batteries. With that improvement, it would make it easier to switch out batteries during the competition for maximum power if needed.

Another issue that came up happened to be the actual wood base itself. It was sharp and not sanded so there was a possibility for personnel to receive splinters or cuts if the device was mishandled unknowingly. The wood was sanded down and deburred in order to remove those sharp edges and flaws, and then it was painted and sealed with Mod Podge to ensure the safety of the paint and the wood.

The last main issue that arose was the overall suction of the vacuum. After analysis, it was determined that there was no outlet near the fan blade for air to flow. There were also too many 3D printed components to ensure no airflow was lost. Both factors were significantly decreasing the amount of air flow and subsequently, the suction power of the vacuum also. The vacuum inlet was redesigned two more times to minimize the components as well as the loss of airflow. The fan blade component was also redesigned with slots on the top to produce more air.

Figure 18 : First Vacuum Inlet Prototype

Figure 19: Second Vacuum Inlet Prototype

Service & Support Plan

	Drive Train Failure	Wire Breaking/Circuit	Vacuum Failure	What if it does not do the necessary tasks?
Procedure	If any part of the drivetrain should fail except for the motor, we plan to replace it with a new part.	Replace compromised circuit parts and hot glue to keep in place.	Replace compromised parts and reseal vacuum where needed.	Fix and adjust any part on the spot to increase usefulness.
Tools Required	2 Axles 2 Wheels 1 Castor Wheel	Wires Sensors 9V Batteries Solder/ Soldering Iron	Batteries Command Strips Adhesive	Tape Hot glue Superglue
Responsibility	Danny	Ryan	Anna	Alaina, Mason

Table 5: Service and Support Plan

Project Planning 1				
Design O	Design Organization:DC Team 9Date: 9/1/2022			
Product Na	me: Vacuum Design			
Task	Name of Task: Brainstorm			
1	Objective: To work together to try and think of ideas on what we want our design to look			
Snapshot	like and how we want it to function			
S	Deliverables: None			
	Decisions/Milestones with Dates:			
	1. Have a few ideas narrowed down. Started $\frac{8}{30}/2022$, completed by $\frac{9}{2}/2022$			
	2. Make a big graph or picture of ideas. Started $\frac{8}{30}/2022$, completed by $\frac{9}{2}/2022$			
	Personnel Needed:			
	Title: All TeammatesHours: 3Percent full time: 100%			
	Time: Estimated Total Hours: 3-5 Actual Total Hours: 3			
	Sequence: Predecessors: None Successors: Narrow to One Idea			
	Planned Start Date: 8/30/2022 Planned Finish Date: 9/2/2022			
	Actual Start Date: 8/30/2022 Actual Finish Date: 9/4/2022			
	Costs: Capital Equipment N/A Disposables: N/A			
Task	Name of Task: Narrow to One Design			
2	Objective: To use our brainstorming ideas in order to finalize an init	tial design		
Snapshot	Deliverables: Project Plan			
5	Decisions/Milestones with Dates:			
	1. Look at brainstorming ideas and each have a favorite desig	n by 9/2/2022.		
	2. Come together and decide on overall best idea by 9/3/2022 Personnel Needed:			
	Title: All TeammatesHours: 2Percent full time:100%			

Time: Estimated Total Hours: 2-3	Actual Total Hours: <mark>4</mark>
Sequence: Predecessors: Brainstorm S	Successors: Drawing
Planned Start Date: 9/1/2022 Planned I	Finish Date: 9/3/2022
Actual Start Date: 9/2/2022	Actual Finish Date: 9/5/2022
Costs: Capital Equipment N/A Disposab	les: N/A

Project Planning 2				
Design O	Design Organization:DC Team 9Date: 9/1/2022			
Product Na	ıme: Vacuum Design Project			
Task	Name of Task: Drawing			
3	Objective: Create an initial drawing of what we want our project to look like.			
Snapshot	Deliverables: None			
5	Decisions/Milestones with Dates:			
	 Each create somewhat of a 2D drawing by 9/6/2022. Come together as a team to compare drawings, work together to decide which design looks the best and makes the most logical sense to work on by 9/7/2022. 			
	Personnel Needed:			
	Title: All teammatesHours: 1-2Percent full time: 100%			
	Time: Estimated Total Hours: 3 Actual Total Hours: 3			
	Sequence: Predecessors: Narrow to One Design Successors: 3D Model			
	Planned Start Date: 9/5/2022 Planned Finish Date: 9/7/2022			
	Actual Start Date: 9/5/2022 Actual Finish Date: 9/9/202	22		
	Costs: Capital Equipment N/A Disposables: N/A			
Task	Name of Task: 3D Model			
4	Objective: Create a 3D model in Solidworks of our initial design			
Snapshot	Deliverables: None			
5	Decisions/Milestones with Dates:			

	 Create initial 3D model in Solidworks by 9/10/2022. Come back together as a team and discuss what needs to be modified by 9/10/2022. Have final 3D model in Solidworks by 9/12/2022 		
	Personnel Needed:Title: Anna Buckley, Ryan BlakeHours: 20Percent full time: 90%		
	Time: Estimated Total Hours: 23 Actual Total Hours: 20 Sequence: Predecessors: Drawing Successors: Collect Parts		
	Planned Start Date: 9/7/2022 Planned Finish Date: 9/12/2022		
	Actual Start Date: 9/10/2022 Actual Finish Date: 9/20/2022		
	Costs: Capital Equipment N/A Disposables: N/A		
The Mechanical Design ProcessDesigned by Professor David G. Ullman			
Copyright 20	Form # 10		

Project Planning 3				
Design C	Design Organization: DC Team 9Date: 9/1/2022			
Product Na	me: Vacuum Design Project		I	
Task	Name of Task: Collecting the Parts			
5	Objective: Collect all parts necessary	for initial design		
Snapshot	Deliverables: None			
8	 Decisions/Milestones with Dates: 5. Decide and make a list of what all we will need to buy by 9/14/2022. 6. Find costs and split up evenly by 9/15/2022. 7. Order and buy all parts by 9/18/2022. Personnel Needed: 			
	Title: All Teammates Hours: 3	Percent full time: 100%		
	Time: Estimated Total Hours: 5	Actual Total Hours: 10		
	Sequence: Predecessors: 3D Model	Successors: First Assembly	/ Prototype	
	Planned Start Date: 9/12/2022 Planned	ed Finish Date: 9/18/2022		

	Actual Start Date: 9/20/2022 Actual Finish Date: 9/28/2022		
	Costs: Capital Equipment: Unknown Disposables: Unknown		
Task	Name of Task: First Assembly Prototype		
6	Objective: Create a first proof of concept prototype.		
Snapshot	Deliverables: Proof of Concept Prototype Meeting with TA/Professor		
8	Decisions/Milestones with Dates:		
	 All parts received by 9/22/2022. Create out a plan on who is building/designing what by 9/23/2022. Each member individually works on their own tasks, working together when necessary. All initial prototype contributions should be done by 10/6/2022. Come together with completed parts/programs and place pieces together by 		
	10. Come together with completed parts/programs and place pieces together by $10/10/2022.$		
	11. Part should work and be ready to go for the week of 10/10/2022 for meeting. Personnel Needed:		
	Title: Alaina Bentley Hours: 30 Percent full time: 20%		
	Title: Anna Buckley Hours: 30 Percent full time: 20%		
	Title: Daniel Pelphrey Hours: 30 Percent full time: 20%		
	Title: Mason Adams Hours: 30 Percent full time: 20%		
	Title: Ryan Blake Hours: 30 Percent full time: 20%		
	Time: Estimated Total Hours: 150Actual Total Hours: 100		
	Sequence: Predecessors: Collecting the Parts Successors: Testing		
	Planned Start Date: 9/18/2022 Planned Finish Date: 10/11/2022		
	Actual Start Date: 9/20/2022 Actual Finish Date: 10/20/2022		
	Costs: Capital Equipment Unknown Disposables: Unknown		
The Mechani	cal Design Process Designed by Professor David G. Ullman		
Copyright 20	18 Form # 10		

Project Planning 4				
Design C	Design Organization: DC Team 9 Date: 9/1/2022			
Product Na	ame: Vacuum Design Project			
Task	Name of Task: Testing			
7	Objective: Analyze the functionality of the first prototype and write	everything.		
Snapshot	hot Deliverables: Unknown			
8	Decisions/Milestones with Dates:			
	 8. Work together after meeting to see how the part functions by 10/15/2022. 9. Deside what needs to be fixed and write up report on that by 10/17/2022 			
	9. Decide what needs to be fixed and write up report on that of Personnel Needed:	<u>y 10/17/2022.</u>		
	Title: All TeammatesHours: 6Percent full time: 100%			
	Time: Estimated Total Hours: 8-10Actual Total Hours:	: 5		
Sequence: Predecessors: First Assembly Prototype Successors: Redesign				
	Planned Start Date: 10/12/2022 Planned Finish Date: 10/17/2022			
	Actual Start Date: 10/22/2022 Actual Finish Date: 11/3/20	22		
	Costs: Capital Equipment Unknown Disposables: Unknown			
Task	Name of Task: Redesigns			
8	Objective: Redesign the project to meet goals and needs.			
Snapshot	hot Deliverables: Unknown			
5	Decisions/Milestones with Dates:			
	 12. Decide as a team what needs to be fixed and split up goals by 10/19/2022. 13. Each work individually on everything outlined together by 10/26/2022. 14. Come back together and re-test the project by 10/28/2022. 15. Repeat if needed. 			
	Personnel Needed:			
	Title: All Teammates Hours: 8 each Percent full time: 100%			
	Time: Estimated Total Hours: 40 Actual Total Hours:	: <mark>20</mark>		
	Sequence: Predecessors: Testing Successors: Analysis			
ſ	Planned Start Date: 10/17/2022 Planned Finish Date: 10/30/2022			
	Actual Start Date: 10/21/2022	Actual Finish Date: 11/8/2022		
--------------	----------------------------------	---------------------------------------		
	Costs: Capital Equipment Unknown	Disposables: Unknown		
The Mechani	ical Design Process	Designed by Professor David G. Ullman		
Copyright 20	018	Form # 10		

	Project Planning 5													
Design C	Drganization: DC Team 9		Date: 9/1/2022											
Product Na	Product Name: Vacuum Design Project													
Task	Name of Task: Analysis													
9	Objective: Analyze final parts and meet necessary requirements.													
Snapshot s	Deliverables: Unknown													
5	Decisions/Milestones with Dates:													
	10. Write up everything the whole process													
	11. All deliverables will be in Canvas so work together as a team to meet every goal.													
	Personnel Needed:													
	Title: All Teammates Hours: 10	Percent full time: 100%												
	Time: Estimated Total Hours: 10	Actual Total Hours	;: <mark>5</mark>											
	Sequence: Predecessors: Redesigns TA/Professor	Successors: Final Part Test	and Meeting with											
	Planned Start Date: 10/30/2022 Planned	d Finish Date: 11/1/2022												
	Actual Start Date: 11/8/2022	Actual Finish Date: 11/10/	2022											
	Costs: Capital Equipment: Unknown	Disposables: Unknown	-											
Task	Name of Task: Final Part Test and Mee	ting with TA/Professor												
10	Objective: Test the final project and have	ve meeting with our TA												
Snapshot	Deliverables: "Final" Project													
S	Decisions/Milestones with Dates:													
	16. Have Meeting with our Professor 11/3/2022	r and write down notes and	d observations by											

	17. Analyze Notes by 11/4/2022	
	Personnel Needed:	
	Title: All Teammates Hours: 5	Percent full time: 100%
	Time: Estimated Total Hours: 5-10	Actual Total Hours: 8
	Sequence: Predecessors: Analysis	Successors: Final Redesigns for Competition
	Planned Start Date: 11/1/2022 Planne	d Finish Date: 11/4/2022
	Actual Start Date: 11/8/2022	Actual Finish Date: 11/11/2022
	Costs: Capital Equipment: Unknown	Disposables: Unknown
The Mechani	ical Design Process	Designed by Professor David G. Ullman
Copyright 20	018	Form # 10

	Project Planning 6											
Design O	Prganization: DC Team 9	Date: 9/1/2022										
Product Na	Product Name: Vacuum Design Project											
Task	Name of Task: Final Redesigns for Competition											
11 Snapshot	Objective: Analyze notes from meeting with TA and redesign to fin be ready for competition	alize the project and										
S	Deliverables: Unknown Decisions/Milestones with Dates: 12. Go over notes and decide what needs to be fixed by 11/5/2022 13. Work together as a team and finalize the product by 11/11/2022											
	Personnel Needed: Title: All Teammates Hours: 10 Percent full time: 100%											
	Time: Estimated Total Hours: 10-12Actual Total Hours	: <mark>3</mark>										
	Sequence: Predecessors: Final Part Test and Meeting Successors COMPETITION	:										
	Planned Start Date: 11/4/2022 Planned Finish Date: 11/11/2022											
	Actual Start Date: 11/10/2022 Actual Finish Date: 11/13/	2022										
	Costs: Capital Equipment Unknown Disposables: Unknown											

Task	Name of Task: COMPETITION!!!!									
12	Objective: Compete in the design competition									
Snapshot s	Deliverables: Final Product									
3	Decisions/Milestones with Dates:									
	18. Have part completed by 11/11/2022.									
	19. Show up to the competition on 11/12/2022									
	rersonner Needed:									
	Title: All TeammatesHours: 3Percent full time: 100%									
	Time: Estimated Total Hours: 3 Actual Total Hours: 3									
	Sequence: Predecessors: Final Redesigns for Competition Successors: None									
	Planned Start Date: 11/11/2022 Planned Finish Date: 11/12/2022									
	Actual Start Date: 11/12/2022 Actual Finish Date: 11/13/2022									
	Costs: Capital Equipment Disposables:									
The Mechani	cal Design Process Designed by Professor David G. Ullman									
Copyright 20	18 Form # 10									

Gantt Chart

MECH202 Design Project

Project start date:	8/30/2022																																								
					30 3	11	234	45	67 E	3910	D 11 12	2 13 1	4 15 1	16 17 1	18 19 2	0 21	22 23	24 25	26 27	28 29	30 1	23	45	67	89	10 11	12 13	14 15	16 17 1	18 19 2	20 21 22	2 23 2	4 25 26	6 27 #	* *	31 1 2	234	56	78	9 10 11	12
Milestone description	Owners	Start	End	Days		νт	FSS				S S M	ту	V T F																							мтν				WTF	s
Project Planning																																									
Brainstorm	All	8/30/2022	9/1/2022	3																																					
Narrow to one design	All	9/1/2022	9/5/2022	2																																					
Drawing	All	9/5/2022	9/7/2022	2																																					
3D Model	Anna, Ryan	9/7/2022	9/12/2022	5																																					
Collect Parts	All	9/12/2022	9/18/2022	6																																					
First Assembly Prototype	All	9/18/2022	10/11/2022	24																																					
Prototype Testing/Redesign	All	10/11/2022	10/24/2022	14																																					
Analysis	All	10/24/2022	11/1/2022	7																																					
Final Part Testing	All	11/1/2022	11/8/2022	7																																		\square			
Final Redesign	All	11/8/2022	11/12/2022	11																																					
Competition	All	11/12/2022	11/12/2022	1																																					

Figure 20: Initial Gantt Chart

MECH202 Design Project Project Start Date: 8/30/2022 30 31 1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 Milestone Descript Owners мт Project Planning Brainstorm ΔII 8/30/2022 9/4/2022 Narrow to One Design All 9/2/2022 9/5/2022 Drawing 9/5/2022 9/9/2022 All 3D Model Anna, Alaina 9/10/2022 9/20/2022 Collect Parts 9/20/2022 9/28/2022 All First Assembly Prototype All 9/20/2022 10/20/2022 30 Prototype Testing All 10/22/2022 11/3/2022 Prototype Testing Redesign Alaina, Anna 10/21/2022 11/8/2022 Analysis All 11/8/2022 11/10/2022 Final Part Testing All 11/8/2022 11/11/2022 Final Redesign All 11/10/2022 11/13/2022 Competition All 11/11/2022 11/13/2022

Figure 21: Final Gantt Chart

Above are two Gantt charts that were used during the process of the design project. The first chart explains the initial goal of the team members with the expected dates of working on the project. The second Gantt chart however explains the final and actual dates of the milestones the group met. It is slightly adjusted, as the milestones did not always get completed on time or took different amounts of time than originally predicted.

The team worked together to complete the project by maintaining constant communication, collaborating on some tasks, and dividing up other tasks based upon individual skill sets and availability. A team contract (below) was drawn up at the beginning of the semester outlining goals as well as strategies for conflict resolution. All team members made sure to attend every class period they were able to so that they were meeting at minimum twice per week face to face. The team also often met outside of class in order to work together and help each other should that be necessary. The team used a group message to maintain constant contact with each other and to alert the group of any issues or important news at a moment's notice. For the majority of the graded assignments, the work would be shared by the team and divided up if there were multiple parts in a way that lent itself such. For the actual design and assembly processes, each team member had an area of the machine that they were focusing on completing. One member was developing the vacuum assembly, one the base, one the drivetrain, one the arduino/sensor assembly, and one storing, the device, solid modeling, and assembling the collective parts.

	Team Contra	act										
Design Organization:	Team 9		0	Date: 🥱	3/25							
Team Member	Roles		Signature									
Daniel Pelphney	design manufacturing											
Moson Adams	Moson Adams tean engineer Mayon adam											
Ryan Blacke	Amerlysis	\frown	<u> </u>									
Anna Buckley	Schodyle	ann	rad	2								
Alaina Bertley	Coding (Mediator	atto		\mathcal{C}								
Т	eam Goals		Respon	sible M	ember							
1. Grade areak pai	ints/deadlines		Teg	M								
2. Hesence	the much of		1									
4. EEstimus	us de place de		1									
5.												
6.												
7.												
8.												
9.												
Team Performance Expectat	ions		Initial									
Strive to complete all assi	gned tasks before or by deadli	nes	AS 1	VA AUE	, 12B	99						
Complete all tasks to the l	best of ability		AB 1	14 AU	, LB	90						
2 Listen carefully and attent	tively to all comments at meet	ings	A8 1	1A ALO	β₿	00						
Accept and give criticism	in a professional manner		AB 11	14 ALB	, 25	<u>N</u>						
Pocus on results before th	e fact, rather than excuses afte	r	KO 11	WA ATUS	140 108	WY NY						
Provide as much notice as	s possible of commitment prot	olems	AD /	MA ALD	128	100						
	an scheduled group meetings		AD	100	, , , ,							
2												
2												
2												
?												
Strategies for Conflict Resol	ution:											
2 John to marinise												
2 Mar 12 anguar 10												
2												
The Mechanical Design Process		Copyright 2	018, Dav	id G. Ullı	man							

Team Members/Team Role Test Results

Anna Buckley

Figure 22: Team Role Test Results for Anna Buckley

Actualizer

Actualizers are team-oriented and listen to all the ideas and suggestions before taking action. They are reliable and efficient and can be counted on to meet deadlines. They like sticking to a plan and don't like deviating from the schedule.

Judge-Appraiser

Judge-Appraisers are great observers and like to evaluate the inner workings of the team to ensure there are no major issues. They are very analytical and need logical justification for all their decisions.

Diplomat

Diplomats are empaths who are excellent at mediating issues between team members without becoming confrontational. Their contributions usually go unnoticed since they keep a lower profile but excel when it comes to helping opposing parties understand one another.

Daniel Pelphrey

Team Role Test

Figure 23: Team Role Test Results for Daniel Pelphrey

Judge-Appraiser

Unbiased problem solvers, who can usually focus on the most logical solution to a problem. They may sometimes lack some of the enthusiasm and passion of other team members.

Connector

Connectors bring energy and enthusiasm to kick off a project. Maintains perspective and awareness of the environment throughout the project. May lose energy towards the end when "grind" type work begins.

Idea Generator

Creatives who can come up with novel and unorthodox ideas. Often imaginative and bright they think in a general manner. May sometimes overlook small details. Will not feel the need to stick to a plan and may look to improvise and adapt as the situation evolves.

Alaina Bentley

Figure 24: Team Role Test Results for Alaina Bentley

Actualizer

The actualizer is a team member who can take ideas from their team and turn them into a reality. Usually, these are people who can be efficient and are often very set in their ways.

Finalizer

The finalizer is the person who will finish the project and make sure it is perfect. Finalizers need to be accurate and reliable.

Coach

The coach is the team member who wants to win and has to bring energy to the team. They are good at keeping people working and on track. However, sometimes the coach can be aggressive and pushy.

Ryan Blake

Figure 25: Team Role Test Results for Ryan Blake

Connector

A connector is someone that is constantly seeking new ideas from outside sources. Whether it be from the industry or from other people, a connector is always seeking inspiration from outside of their circle. In addition to this connectors are also great at networking and finding sources of help towards a project

Director

A director is someone that is able to take a leadership role within a team and is able to take a broader look at a project. Directors are able to realize the skills of people that they are working with and are able to delegate tasks that fall in line with an individual's skills. In addition, directors can also play a large role in keeping the group moving in the right direction as well as helping finalize decisions.

Coach

Coaches are driven by the desire to achieve and succeed. While they can be perceived as overbearing and controlling at times, coaches can help provide a spark that motivates a group to push forward.

Mason Adams

Figure 26: Team Role Test Results for Mason Adams

Director

Confident, stable, and mature all describe a director. Keeping the end goal in mind, a director helps navigate any stress the team may run into.

Finalizer

Give the extra effort to help the team go a step further. Make sure the work provided is adequate and current to the fullest extent. Also calls for a strong aspect of reliability.

Connector

Leading with a rush of enthusiasm to generate outside-of-the-team connections that may be beneficial in the long run. A lot of focus is placed on networking.

Team Health Assessments

Team Health Assessment												
Team Assessed: DC Team 9	Date:	10/0	8/202	2								
SA = Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD = Strongly Disagree, NA = Not Applicable												
Measure	SA	AA	Ν	D	SD	NA						
1 Team mission and purpose are clear, consistent and attainable.	X		Ī									
2 I feel that I am part of a team.	X											
3 I feel good about the team's progress		X										
4 Respect has been built within the team for diverse points of view.			X									
5 Team environment is characterized by honesty, trust, mutual				~								
respect, and team work				^								
6 The roles and work assignments are clear	X											
7 Team treats every member's ideas as having potential value		X										
8 Team encourages individual differences.		X										
9 Conflicts within the team are aired and worked to resolution.				Х								
10 Team takes time to develop consensus by discussing the												
concerns of all members to arrive at an acceptable solution		×										
11 Decisions are made with input from all in a collaborative environmen	t.	X										
12 The environment encourages communication and does not "kill the												
messenger" when the news is bad.	^											
13 When one team member has a problem others jump in to help	X											
14 Dysfunctional behavior is dealt with in an appropriate manner			Х									
15 When someone on the team says they are going to do something, the												
team can count on it being done.		^										
16 There is no "them and us" on the team					х							
17 Our team cultivates a "what we can learn" attitude when things do no	t	×										
go as expected.		^										
18												
19												
20												
Remedies for improving the Neutral (N), Disagree (D) and Strongly Dis Talks with the team in order to try and resolve issues.	agree(SD)	respo	nses:								
Assessor: Alaina Bentley												
The Mechanical Design Process Copy	right 20	18, D	avid G	Ullm	an							

	Team Health Assessmen	t					
	Team Assessed: DC Team 9	Date:	11/11	/2022	2		
SA	= Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD = Strongly Disa	gree, NA	= No	t Appl	icable		
	Measure	SA	AA	Ν	D	SD	NA
1	Team mission and purpose are clear, consistent and attainable.	X					
2	I feel that I am part of a team.				Х		
3	I feel good about the team's progress				Х		
4	Respect has been built within the team for diverse points of view.				Х		
5	Team environment is characterized by honesty, trust, mutual		×				
	respect, and team work		^				
6	The roles and work assignments are clear	X					
7	Team treats every member's ideas as having potential value		Х				
8	Team encourages individual differences.		X				
9	Conflicts within the team are aired and worked to resolution.					Х	
10	Team takes time to develop consensus by discussing the			v			
	concerns of all members to arrive at an acceptable solution			^			
11	Decisions are made with input from all in a collaborative environmen	ıt.	X				
12	The environment encourages communication and does not "kill the	v					
	messenger" when the news is bad.						
13	When one team member has a problem others jump in to help		X				
14	Dysfunctional behavior is dealt with in an appropriate manner			X			
15	When someone on the team says they are going to do something, the	e				x	
	team can count on it being done.					^	
16	There is no "them and us" on the team					Х	
17	Our team cultivates a "what we can learn" attitude when things do no	ot	x				
	go as expected.						
18			_	<u> </u>			
19			_				
20							
Re Ur	medies for improving the Neutral (N), Disagree (D) and Strongly Di known. Efforts have not been useful as of now.	sagree(SD) r	espor	ises:		
As	sessor: Alaina Bentley						
Th	e Mechanical Design Process Copy	right 20	18, Da	avid G	Ullm	an	

Team Health As	ssessmen	t											
Team Assessed: DC Team 9]	Date: 1	ate: 12/8/2022										
SA = Strongly Agree, A = Agree, N = Neutral, D = Disagree, SD	= Strongly Disag	ree, NA	NA = Not Applicable										
Measure		SA	Α	Ν	D	SD	NA						
1 Team mission and purpose are clear, consistent and a	ttainable.	Х											
2 I feel that I am part of a team.	2 I feel that I am part of a team.												
3 I feel good about the team's progress			Х										
4 Respect has been built within the team for diverse poi	nts of view.		Х										
5 Team environment is characterized by honesty, trust, a	mutual				v								
respect, and team work					^								
6 The roles and work assignments are clear		X											
7 Team treats every member's ideas as having potential	value		Х										
8 Team encourages individual differences.			Х										
9 Conflicts within the team are aired and worked to res	olution.					Х							
10 Team takes time to develop consensus by discussing	the			~									
concerns of all members to arrive at an acceptable so	lution			^									
11 Decisions are made with input from all in a collaborati	ve environmen	t.	Х										
12 The environment encourages communication and does	s not "kill the	v											
messenger" when the news is bad.		^											
13 When one team member has a problem others jump in	n to help	X											
14 Dysfunctional behavior is dealt with in an appropriate	manner						х						
15 When someone on the team says they are going to do	something, the		×										
team can count on it being done.			^										
16 There is no "them and us" on the team						Х							
17 Our team cultivates a "what we can learn" attitude wh	en things do no	t	x										
go as expected.			^										
18													
19													
Remedies for improving the Neutral (N), Disagree (D) and Strongly Disagree(SD) responses: Efforts never ended up working. Team work is low and it is a 2.5/5 person team.													
Assessor: Alaina Bentley													
The Mechanical Design Process	Сору	right 201	8, Da	viđ G.	Ullm	an							

Failure Analysis

The team finished the competition day with 2 wins and 2 losses. This was not enough to place in the top three of the competition. The device fell short largely due to low performance and quality of its parts and materials. Not enough time and money was budgeted to develop all of the parts to their full potential.

Figure 27: Final Vacuum Assembly

Vacuum Assembly

While the vacuum we developed was able to suck up some matter, it was not as effective as a lot of the competition. This was in large part due to issues developing the housing in a way that significant suction was generated. The team struggled with keeping the housing sealed everywhere while still having a solid exhaust for the air to leave. A proper exhaust was not actually developed until days before the competition and the first iteration of the design had to be used on competition day. For budgeting reasons, the robot was limited to the small motor and 12V battery that also limited the power, affecting the performance of the vacuum.

The design could have been improved in several ways. First, more suction could have been generated simply by using a bigger and more powerful motor to spin our fan. The waste container could also have been designed in a more favorable shape to help overall performance and the removal of collected debris on competition day. The shape used was a hollow cylinder, which allowed air to stagnate from the sharp corners in the design. If it had been rounded inside to create a vortex, it could have more efficiently generated suction from the fan and motor used. The exhaust could have been redesigned as well so that all of the air was leaving the housing on the backside without escaping elsewhere.

Drive Train

The weak point of the drivetrain was the support (dolly) wheels that were essentially just dragging along the ground. While the device was able to move around the arena. It moved at a slower rate than anticipated and would become stopped for short periods of time.

This could have been improved upon in several ways. The wheels could have been replaced with some that spun more smoothly and had better traction on sand in order to help them rotate. Some wheels like this were designed, but not enough time was left to implement them onto the robot. Two more driven wheels could also have been used, allowing all supports to be powered and eliminating drag. This would have been difficult to accomplish without going over budget.

Figure 28: SolidWorks Model of Castor Wheel Hinge

Circuitry

As designed, the circuitry was adequate to be competitive in the competition, the main drawback was durability. One of the sensors stopped working on competition day due to a poor connection. The height of the sensors also needed some competition day adjustment after we found they were too high to get an accurate reading with the height of the 2x4s used to enclose the competition area. After these adjustments, the sensors worked slightly better resulting in more accurate readings and better competition runs.

The design could have been improved by using newer bread boards that would hold better connections and by hot gluing the connections once they were all set properly.

References

- [1] J. S. Cook Jeremy S. Cook has a BSME from Clemson University, "All about Ultrasonic Sensors & how they work with Arduino," *Arrow.com*, 13-Oct-2022. [Online]. Available: https://www.arrow.com/en/research-and-events/articles/ultrasonic-sensors-how-they-wor k-and-how-to-use-them-with-arduino#:~:text=Ultrasonic%20sensors%20work%20by%2 0emitting,return%20after%20hitting%20an%20object. [Accessed: 08-Dec-2022].
- [2] "M18 fuel Packout 2.5 gallon wet/dry vacuum," *Milwaukee Tool*, 2018. [Online]. Available: https://www.milwaukeetool.com/Products/Power-Tools/Vacuums-and-Fans/0970-20#sp-s pecs. [Accessed: 08-Dec-2022]. [Accessed: 08-Dec-2022].
- [3] "Roomba® J7 Robot Vacuum," *iRobot*, 2017. [Online]. Available: https://www.irobot.com/en_US/roomba-j7-robot-vacuum/J715020.html. [Accessed: 08-Dec-2022].
- [4] Á. Jónsson, E. Sveinsson, and Ú. K. Arnórsson, "Reverse Engineering iRobot." Reykjavik University, Reykjavik, Iceland, 26-Feb-2014.
- [5] "Understanding vacuum cleaner specifications," *BestVacuum.com*. [Online]. Available: https://www.bestvacuum.com/pages/vacuum-cleaner-specifications. [Accessed: 09-Dec-2022].
- [6] "Arduino DC Motor," *Tutorials Point*. [Online]. Available: https://www.tutorialspoint.com/arduino/arduino_dc_motor.htm. [Accessed: 09-Dec-2022].
- [7] N. Crotti, "What is the difference between DC brushed and Brushless Motors?," *Medical Design and Outsourcing*, 13-Nov-2018. [Online]. Available: https://www.medicaldesignandoutsourcing.com/what-is-the-difference-between-dc-brush ed-and-brushless-motors/#:~:text=The%20key%20difference%20between%20brushed,m ore%20gradual%20ball%20bearing%20wear. [Accessed: 09-Dec-2022].
- [8] "SOLIDWORKS 2023 help," SolidWorks Web Help. [Online]. Available:

https://help.solidworks.com/. [Accessed: 09-Dec-2022].